Student Team Culina Awarded at BDC 2020
June 24, 2020HBBE is Growing
July 10, 2020Published in
Journal of Co2 Utilization
Abstract
In this study, we synthesized for the first time a bimetal-based inorganic-carbonic anhydrase (CA) hybrid nanoflower to immobilize CA using Cu2+ and Zn2+ instead of single metal ion. Subsequently, the synthesized bimetallic hybrid nanoflowers (CANF) were embedded into the poly(vinyl alcohol) (PVA)-chitosan (CS) hydrogel networks to obtain PVA/CS@CANF hydrogel membrane. The CANF exhibited a significantly higher activity recovery of 70 % compared with 35 % with CA/Zn3(PO4)2 hybrid nanoflowers and 10 % with CA/Cu3(PO4)2 hybrid nanoflowers. The PVA/CS@CANF hydrogel membrane possessed excellent mechanical strength, high catalytic activity, and were easy to flow out without centrifugation or filtration. At the same time, the PVA/CS@CANF displayed higher thermostability, storage stability, and pH stability than free CA and CANF, and superior reusability and CO2 capture capacity. The hydrogel membrane maintained more than 75 % of its original activity after 8 cycles. However, CANF only maintained 12 % of its original activity. Furthermore, the amount of CaCO3 produced by PVA/CS@CANF membrane was 9.0-fold and 2.0-fold compared with free CA and CANF, respectively. Therefore, This approach to synthesizing bimetallic-based protein hybrid hydrogel membrane could have a bright future in CO2 capture.